3.354 \(\int \frac{x}{\sqrt{a+b x^3} (2 (5-3 \sqrt{3}) a+b x^3)} \, dx\)

Optimal. Leaf size=310 \[ -\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{a+b x^3}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}} \]

[Out]

-((2 + Sqrt[3])*ArcTan[(3^(1/4)*a^(1/6)*((1 - Sqrt[3])*a^(1/3) - 2*b^(1/3)*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(3*
Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTan[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) + b^(1/3)*x))
/(Sqrt[2]*Sqrt[a + b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) + ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*(1 - Sqrt[3
])*a^(1/6)*(a^(1/3) + b^(1/3)*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(2*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) + ((2 + Sqrt
[3])*ArcTanh[((1 + Sqrt[3])*Sqrt[a + b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt[a])])/(3*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0509157, antiderivative size = 310, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.03, Rules used = {487} \[ -\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{a+b x^3}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x^3]*(2*(5 - 3*Sqrt[3])*a + b*x^3)),x]

[Out]

-((2 + Sqrt[3])*ArcTan[(3^(1/4)*a^(1/6)*((1 - Sqrt[3])*a^(1/3) - 2*b^(1/3)*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(3*
Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTan[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) + b^(1/3)*x))
/(Sqrt[2]*Sqrt[a + b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) + ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*(1 - Sqrt[3
])*a^(1/6)*(a^(1/3) + b^(1/3)*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(2*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) + ((2 + Sqrt
[3])*ArcTanh[((1 + Sqrt[3])*Sqrt[a + b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt[a])])/(3*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3))

Rule 487

Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3], r = Simplify[(b
*c - 10*a*d)/(6*a*d)]}, -Simp[(q*(2 - r)*ArcTan[((1 - r)*Sqrt[a + b*x^3])/(Sqrt[2]*Rt[a, 2]*r^(3/2))])/(3*Sqrt
[2]*Rt[a, 2]*d*r^(3/2)), x] + (-Simp[(q*(2 - r)*ArcTan[(Rt[a, 2]*Sqrt[r]*(1 + r)*(1 + q*x))/(Sqrt[2]*Sqrt[a +
b*x^3])])/(2*Sqrt[2]*Rt[a, 2]*d*r^(3/2)), x] - Simp[(q*(2 - r)*ArcTanh[(Rt[a, 2]*Sqrt[r]*(1 + r - 2*q*x))/(Sqr
t[2]*Sqrt[a + b*x^3])])/(3*Sqrt[2]*Rt[a, 2]*d*Sqrt[r]), x] - Simp[(q*(2 - r)*ArcTanh[(Rt[a, 2]*(1 - r)*Sqrt[r]
*(1 + q*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(6*Sqrt[2]*Rt[a, 2]*d*Sqrt[r]), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{a+b x^3} \left (2 \left (5-3 \sqrt{3}\right ) a+b x^3\right )} \, dx &=-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{a+b x^3}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}+\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{a+b x^3}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.0903689, size = 83, normalized size = 0.27 \[ \frac{x^2 \sqrt{\frac{b x^3}{a}+1} F_1\left (\frac{2}{3};\frac{1}{2},1;\frac{5}{3};-\frac{b x^3}{a},-\frac{b x^3}{10 a-6 \sqrt{3} a}\right )}{\left (20 a-12 \sqrt{3} a\right ) \sqrt{a+b x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/(Sqrt[a + b*x^3]*(2*(5 - 3*Sqrt[3])*a + b*x^3)),x]

[Out]

(x^2*Sqrt[1 + (b*x^3)/a]*AppellF1[2/3, 1/2, 1, 5/3, -((b*x^3)/a), -((b*x^3)/(10*a - 6*Sqrt[3]*a))])/((20*a - 1
2*Sqrt[3]*a)*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.063, size = 538, normalized size = 1.7 \begin{align*}{\frac{{\frac{i}{27}}\sqrt{2}}{a{b}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}-6\,a\sqrt{3}+10\,a \right ) }{\frac{1}{{\it \_alpha}}\sqrt [3]{-a{b}^{2}}\sqrt{{{\frac{i}{2}}b \left ( 2\,x+{\frac{1}{b} \left ( -i\sqrt{3}\sqrt [3]{-a{b}^{2}}+\sqrt [3]{-a{b}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}}\sqrt{{b \left ( x-{\frac{1}{b}\sqrt [3]{-a{b}^{2}}} \right ) \left ( -3\,\sqrt [3]{-a{b}^{2}}+i\sqrt{3}\sqrt [3]{-a{b}^{2}} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}b \left ( 2\,x+{\frac{1}{b} \left ( i\sqrt{3}\sqrt [3]{-a{b}^{2}}+\sqrt [3]{-a{b}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}} \left ( 3\,i\sqrt [3]{-a{b}^{2}}{\it \_alpha}\,\sqrt{3}b+4\,{b}^{2}{{\it \_alpha}}^{2}\sqrt{3}-3\,i \left ( -a{b}^{2} \right ) ^{{\frac{2}{3}}}\sqrt{3}-2\,\sqrt{3}\sqrt [3]{-a{b}^{2}}{\it \_alpha}\,b+6\,i\sqrt [3]{-a{b}^{2}}{\it \_alpha}\,b+6\,{b}^{2}{{\it \_alpha}}^{2}-2\,\sqrt{3} \left ( -a{b}^{2} \right ) ^{2/3}-6\,i \left ( -a{b}^{2} \right ) ^{{\frac{2}{3}}}-3\,\sqrt [3]{-a{b}^{2}}{\it \_alpha}\,b-3\, \left ( -a{b}^{2} \right ) ^{2/3} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-a{b}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}}},-{\frac{1}{6\,ab} \left ( 2\,i\sqrt{3}\sqrt [3]{-a{b}^{2}}{{\it \_alpha}}^{2}b-i\sqrt{3} \left ( -a{b}^{2} \right ) ^{{\frac{2}{3}}}{\it \_alpha}+4\,i\sqrt [3]{-a{b}^{2}}{{\it \_alpha}}^{2}b-2\,\sqrt{3} \left ( -a{b}^{2} \right ) ^{2/3}{\it \_alpha}+i\sqrt{3}ab-2\,i \left ( -a{b}^{2} \right ) ^{{\frac{2}{3}}}{\it \_alpha}-2\,\sqrt{3}ab-3\, \left ( -a{b}^{2} \right ) ^{2/3}{\it \_alpha}+2\,iab-3\,ab \right ) },\sqrt{{\frac{i\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}} \left ( -{\frac{3}{2\,b}\sqrt [3]{-a{b}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{b{x}^{3}+a}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3+a)^(1/2),x)

[Out]

1/27*I/b^3/a*2^(1/2)*sum(1/_alpha*(-a*b^2)^(1/3)*(1/2*I*b*(2*x+1/b*(-I*3^(1/2)*(-a*b^2)^(1/3)+(-a*b^2)^(1/3)))
/(-a*b^2)^(1/3))^(1/2)*(b*(x-1/b*(-a*b^2)^(1/3))/(-3*(-a*b^2)^(1/3)+I*3^(1/2)*(-a*b^2)^(1/3)))^(1/2)*(-1/2*I*b
*(2*x+1/b*(I*3^(1/2)*(-a*b^2)^(1/3)+(-a*b^2)^(1/3)))/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*(3*I*(-a*b^2)^(1/3)
*_alpha*3^(1/2)*b+4*b^2*_alpha^2*3^(1/2)-3*I*(-a*b^2)^(2/3)*3^(1/2)-2*3^(1/2)*(-a*b^2)^(1/3)*_alpha*b+6*I*(-a*
b^2)^(1/3)*_alpha*b+6*b^2*_alpha^2-2*3^(1/2)*(-a*b^2)^(2/3)-6*I*(-a*b^2)^(2/3)-3*(-a*b^2)^(1/3)*_alpha*b-3*(-a
*b^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b
^2)^(1/3))^(1/2),-1/6/b*(2*I*3^(1/2)*(-a*b^2)^(1/3)*_alpha^2*b-I*3^(1/2)*(-a*b^2)^(2/3)*_alpha+4*I*(-a*b^2)^(1
/3)*_alpha^2*b-2*3^(1/2)*(-a*b^2)^(2/3)*_alpha+I*3^(1/2)*a*b-2*I*(-a*b^2)^(2/3)*_alpha-2*3^(1/2)*a*b-3*(-a*b^2
)^(2/3)*_alpha+2*I*a*b-3*a*b)/a,(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1
/3)))^(1/2)),_alpha=RootOf(b*_Z^3-6*a*3^(1/2)+10*a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{{\left (b x^{3} - 2 \, a{\left (3 \, \sqrt{3} - 5\right )}\right )} \sqrt{b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/((b*x^3 - 2*a*(3*sqrt(3) - 5))*sqrt(b*x^3 + a)), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a + b x^{3}} \left (- 6 \sqrt{3} a + 10 a + b x^{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**3+2*a*(5-3*3**(1/2)))/(b*x**3+a)**(1/2),x)

[Out]

Integral(x/(sqrt(a + b*x**3)*(-6*sqrt(3)*a + 10*a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

sage0*x